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Abstract. Recently, Yen and Guo proposed a chaotic neural network
(CNN) for signal encryption, which was suggested as a solution for pro-
tection of digital images and videos. The present paper evaluates the se-
curity of this CNN-based encryption scheme, and points out that it is not
secure from the cryptographical point of view: 1) it can be easily broken
by known/chosen-plaintext attacks; 2) its security against the brute-force
attack was much over-estimated. Some experiments are shown to sup-
port the results given in this paper. It is also discussed how to improve
the encryption scheme.

1 Introduction

In the digital world today, the security of multimedia data (such as digital
speeches, images, and videos) becomes more and more important since the com-
munications of such digital signals over open networks occur more and more
frequently. Also, special and reliable security in storage and transmission of
multimedia products is needed in many real applications, such as pay-TV, med-
ical imaging systems, military image/database communications and confidential
video conferences, etc. To fulfill such a need, many encryption schemes have
been proposed as possible solutions [1, Sec. 4.3], among which some are based
on chaotic systems [1, Sec. 4.4]. Meanwhile, cryptanalysis work has also been de-
veloped, which reveal that some proposed multimedia encryption schemes have
been known to be insecure.

From 1998, Yen et al. proposed a number of chaos-based multimedia encryp-
tion schemes [1, Sec. 4.4.3], but some of them have been successfully broken by
Li et al. [2–6]. This paper analyzes the security of a class of encryption schemes
proposed by Yen et al. in [7–9], which have not yet been cryptanalyzed before.
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In a recent paper [10], this class of encryption schemes were simply extended
to arbitrary block size without influencing the security and then applied for
JPEG2000 image encryption.

The studied encryption scheme here is a stream cipher based on a chaotic
neural network (CNN), which is designed to encrypt 1-D signals and is simply
extended to encrypt 2-D digital images and 3-D videos. This paper evaluates
the security of the CNN-based scheme and points out two security problems:
1) it can be easily broken by the known/chosen-plaintext attacks with only one
known/chosen plaintext; 2) its security against the brute-force attack was much
over-estimated.

The rest of the present paper is organized as follows. In Sec. 2, a brief intro-
duction of the CNN-based encryption scheme is given. The cryptanalytic studies
and some experimental results are given in Sec. 3. Section 4 briefly discusses how
to improve the security of the studied encryption scheme, and the last section
concludes the paper.

2 The CNN-Based Scheme for Signal Encryption

In the following, the concerned encryption scheme is simply referred to as CNN.
Assuming that {f(n)}M−1

n=0 is a 1-D signal for encryption, the encryption
procedure of CNN can be briefly depicted as follows:

– The chaotic Logistic map f(x) = µx(1 − x) is used, where µ is the control
parameter [11].

– The secret key is the control parameter µ and the initial point x(0) of the
Logistic map, which are all L-bit binary decimals.

– The initialization procedure: under L-bit finite computing precision, run the
Logistic map from x(0) to get a chaotic sequence {x(i)}d8M/Ke−1

i=0 , and ex-
tract K bits below the decimal dot of each chaotic state1 to generate a chaotic
bit sequences {b(i)}8M−1

i=0 , where x(i) = 0.b(Ki + 0) · · · b(Ki + K − 1) · · · .
– The encryption procedure: For the n-th plain-element f(n) =

∑7
i=0 di(n)×2i,

the corresponding cipher-element f ′(n) =
∑7

i=0 d′i(n)× 2i is determined by
the following process:
• for i = 0 ∼ 7 and j = 0 ∼ 7, 64 weights wji are calculated as follows: if

i = j, wji = 0; else wji = 1− 2b(8n + i) =

{
1, b(8n + i) = 0,

−1, b(8n + i) = 1;
• for i = 0 ∼ 7, 8 biases θi are calculated as follows:

θi =
2b(8n + i)− 1

2
=

{
−1/2, b(8n + i) = 0,

1/2, b(8n + i) = 1;

1 In real implementations of CNN, the K bits can be extracted from the direct mul-
tiplication result µx(i − 1)(1 − x(i − 1)), before x(i) is obtained by quantizing the
value. As a result, it is possible that K > L. For example, in [9], K = 32 > L = 17.
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• the i-th cipher-bit d′i(n) is calculated as follows:

d′i(n) = sign
(∑7

j=0
wji × di(n) + θi

)
, (1)

where sign(·) denotes the sign function, i.e., sign(x) =

{
1, x ≥ 0,

0, x < 0.
– The decryption procedure is the same as the above one.

The above encryption procedure looks very complicated, however, actually
it can be simplified to be a much more precise form. Observing the proofs of
Proposition 1 in [7, 8] and Lemma 1 in [9], one can see the following fact:

d′i(n) =


0, if di(n) = 0 and b(8n + i) = 0,

1, if di(n) = 1 and b(8n + i) = 0,

1, if di(n) = 0 and b(8n + i) = 1,

0, if di(n) = 1 and b(8n + i) = 1,

(2)

which means that
d′i(n) = di(n)⊕ b(8n + i), (3)

where ⊕ denotes the XOR operation.
Obviously, CNN is a stream cipher encrypting the plain-signal bit by bit,

where the key stream for masking is the chaotic bit sequence {b(i)}.

3 Cryptanalysis of the CNN-Based Encryption Scheme

3.1 Brute-Force Attacks

In [7–9], it was claimed that the computing complexity of a brute-force attack
to CNN is O

(
28M

)
, since there are 8M bits in {b(i)}8M−1

i=0 (which is unknown to
the attacker). However, this statement is not true due to the following fact: the
8M bits are uniquely determined by the secret key, i.e., the control parameter µ
and the initial condition x(0), which have only 2L secret bits. This means that
there are only 22L different chaotic bit sequences.

Now, let us see what is the real complexity of a brute-force attack. For each
guessed value of x(0) and µ, about 8M/K chaotic iterations and 8M XOR
operations are needed for verification. Assuming that each L-bit digital multi-
plication needs L times of additions, then each chaotic iteration needs 2L + 1
times of additions. Therefore, the complexity of a brute-force attack to CNN
will be O

(
22L ×

(
8M(2L+1)

K + 8M
))

= O
(
22LM

)
, which is much smaller than

28M when M is not too small. What’s more, considering the fact that the Logis-
tic map can exhibit strong chaotic behavior only when µ is close to 4 [11], the
complexity should be even smaller than O

(
22LM

)
.

The above analysis shows that the security of CNN was much over-estimated
by the authors, even under the simplest attack. Because of the rapid progress
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of digital computer and distributed computing techniques, the complexity not
lower than O

(
2128

)
is required for a cryptographically strong cipher [12]. To

achieve such a security level, L ≥ 64 is required. As a comparison, L = 8 in [8]
and L = 17 in [9], which are both too small2.

3.2 Known/Chosen-Plaintext Attacks

In known-plaintext or chosen-plaintext attacking scenarios, CNN can be broken
with only one known/chosen plaintext {f(n)}M−1

n=0 and its corresponding cipher-
text {f ′(n)}M−1

n=0 , with a complexity that is smaller than the complexity of a
brute-force attack.

From Eq. (3), one can get b(8n + i) = gi(n)⊕ g′i(n). That is, an attacker can
successfully reconstruct the chaotic bit sequence {b(i)}8M−1

i=0 by simply XORing
{f(n)}M−1

n=0 and {f ′(n)}M−1
n=0 bit by bit. Assuming {fm(n) = f(n)⊕ f ′(n)}M−1

n=0 ,
one has fm(n) = 0.b(8n + 0) · · · b(8n + 7). Without deriving the secret key
(µ, x(0)), given any ciphertext g′ encrypted with the same secret key, the at-
tacker can use fm to decrypt the M leading bytes of the corresponding plaintext
g: n = 0 ∼ M−1, g(n) = g′(n)⊕fm(n). Here, we call fm the mask signal (or the
mask image when CNN is used to encrypt digital images), since the plaintext
can be decrypted by using fm to “mask” (i.e., XOR) the ciphertext3.

To demonstrate the above attack, with the parameters L = 17,K = 32 [9]
and the secret key µ = 3.946869, x(0) = 0.256966, some experiments are given
for the encryption of digital images. In Fig. 1, a 256× 256 known/chosen plain-
image “Lenna”, its corresponding cipher-image, and the mask image fm = f⊕f ′

are shown. If another plain-image “Babarra” (of size 256×256) is encrypted with
the same key, it can be broken with the mask image fm derived from “Lenna”
as shown in Fig. 2. For a larger plain-image “Peppers” (of size 384 × 384), the
256× 256 leading pixels can be successfully broken with fm as shown in Fig. 3.

From the above experiments, one can see that the breaking performance of
known/chosen-plaintext attacks based on fm is limited. Fortunately, from the
reconstructed bit sequence {b(i)}8M−1

i=0 , it is easy for an attacker to derive the
values of µ and x(0), and then to completely break CNN. Even when only part
of a plaintext f(n1) ∼ f(n2) is known to the attacker, he can still derive the
values of µ and a chaotic state x(i), which can be used to calculate all following
chaotic states, i.e., all following chaotic bits {b(i)}∞i=8n2

. In this case, all plain-
pixels after the n1-th position can be broken. In the following, let us discuss how
to derive chaotic states and the value of µ.

Firstly, let us see how a chaotic state x(i) is derived. Recall the generation
procedure of {b(i)}8M−1

i=0 . It is easy to reconstruct a K-bit approximate of the
chaotic sequence by dividing {b(i)}8M−1

i=0 into K-bit segments: {x̃(i)}d8M/Ke−1
i=0 ,

2 In [7], the value of L is not explicitly mentioned. Since [7] is an initial version of [8],
it is reasonable to assume L = 8.

3 In fact, it is a common defect of most stream ciphers [12].
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a) The plain-image f b) The cipher-image f ′ c) The mask image fm

Fig. 1. One known/chosen plain-image “Lenna” (256× 256), its corresponding cipher-
image, and the mask image fm = f ⊕ f ′

a) The plain-image
“Babarra”

b) The encrypted
“Babarra”

c) The recovered
“Babarra” with fm

Fig. 2. Decrypt a plain-image “Babarra” (256× 256) with fm shown in Fig. 1c

a) The plain-image
“Peppers”

b) The encrypted
“Peppers”

c) The recovered
“Peppers” with fm

Fig. 3. Decrypt a plain-image “Peppers” (384× 384) with fm shown in Fig. 1c

where x̃(i) = 0.b(Ki + 0) · · · b(Ki + K − 1) and

|∆x(i)| = |x̃(i)− x(i)| ≤ 0.

K︷ ︸︸ ︷
0 · · · 0

L−K︷ ︸︸ ︷
1 · · · 1 =

L∑
j=K+1

2−j < 2−K . (4)
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Apparently, when L ≤ K, x̃(i) = x(i); when L > K, the exact value of each
chaotic state x(i) can be derived by exhaustively guessing the L −K unknown
bits, and the guess complexity is O

(
2L−K

)
.

Once two consecutive chaotic states x(i) and x(i + 1) are derived, the esti-
mated value of µ can be calculated to be µ̃ = x(i+1)

x(i)·(1−x(i)) . Due to the influence
of quantization errors existing in forward chaotic iterations, in general µ̃ 6= µ.
When the difference between µ̃ and µ is sufficiently small, it is possible to ex-
haustively search the neighborhood of µ̃ to find the accurate value of µ with a
sufficiently small complexity. In the following, we will show how to get a µ̃ close
enough to µ, and estimate the search complexity of the accurate value of µ.

Apparently, the estimation error ∆µ = µ̃ − µ is caused by the quantization
error ∆x(i + 1) generated in the forward chaotic iteration x(i + 1) = µ · x(i) ·
(1 − x(i)). In one L-bit digital multiplication, the quantization error does not
exceed 2−L for the floor or ceiling quantization function, and does not exceed
2−(L+1) for the round quantization function. Considering there are two L-bit
digital multiplications in each forward chaotic iteration, one has

x̄(i + 1) = (µ · x(i) + ∆1x(i + 1)) · (1− x(i)) + ∆2x(i + 1)
= µ · x(i) · (1− x(i)) + ∆1x(i + 1) · (1− x(i)) + ∆2x(i + 1)
= x(i + 1) + ∆x(i + 1),

where x̄(i+1) denotes the real value of x(i+1) and ∆x(i+1) = ∆1x(i+1) · (1−
x(i))+∆2x(i+1). Then, one can get |∆x(i+1)| ≤ |∆1x(i+1)|+ |∆2x(i+1)| <
2−L + 2−L = 2−(L−1), and get the quantization error |∆µ| as follows:

|∆µ| =
∣∣∣∣ ∆x(i + 1)
x(i) · (1− x(i))

∣∣∣∣ =
∣∣∣∣∆x(i + 1)

x(i + 1)
· x(i + 1)
x(i) · (1− x(i))

∣∣∣∣
=
|∆x(i + 1)|

x(i + 1)
· µ <

2−(L−1)

x(i + 1)
· 4 =

1
2L−3 · x(i + 1)

. (5)

When x(i+1) ≥ 2−n (n = 1 ∼ L), |∆µ| < 1
2L−3·x(i+1)

≤ 1
2L−3·2−n = 2n+3×2−L,

which means the size of the neighborhood of µ̃ for exhaustive search is 2n+3. To
minimize the search complexity in real attacks, x(i + 1) ≥ 0.5 is suggested to
derive µ, which occurs with a probability of 0.5. In this case, n = 1 and the size
of the searched neighborhood is only 23+1 = 16.

With the mask image fm derived from the known plain-image “Lenna” (of
size 256×256) shown in Fig. 1a, the values of x(0) and µ are calculated following
the above procedure to completely decrypt the larger plain-image “Peppers” (of
size 384× 384). The decryption result is given in Fig. 4.

Finally, it deserves being mentioned that even without deriving the secret
key there is another way based on a mask signal fm to decrypt any plaintext
of arbitrary size. It is due to the following fact: for a digital chaotic system
implemented in L-bit finite computing precision, each chaotic orbit will lead to
a cycle whose length is smaller than 2L (and generally much smaller than 2L,
see [4, Sec. 2.5]). For the implementation of CNN in [9], L = 17, K = 32. Thus,
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Fig. 4. The decrypted
“Peppers” (384× 384) with
the secret key derived from
fm shown in Fig. 1c

a) The extended mask
image f∗

m

b) The recovered
“Peppers” with f∗

m

Fig. 5. Decrypt “Peppers” (384× 384) with f∗
m extended

from fm shown in Fig. 1c

the cycle length of each chaotic orbit will be much smaller than 217 in most
cases. Such a length is not sufficiently large in comparison with the size of many
plaintexts, especially for digital images and videos. For example, a 256 × 256
image corresponds to a chaotic orbit {x(i)} whose length is 8× 256× 256/32 =
214. For almost every value of µ and x(0), the cycle length of {x(i)} is even much
smaller than 214, which means that there exists an visible repeated pattern in
{x(i)}. Carefully observing the mask image fm shown in Fig. 1c, one can easily
find such a repeated pattern. Then, it is easy to get the cycle of fm, and to extend
it to arbitrary sizes by appending more cycles at the end of the original mask
signal. This means that any ciphertext can be decrypted with a mask signal f∗m
extended from the mask image fm. Using such a method, the larger plain-image
“Peppers” is completely decrypted as shown in Fig. 5.

4 Improving the CNN-Based Encryption Scheme

The simplest way to improve the original CNN is to make L sufficiently large so
as to ensure the complexity of the brute-force attack cryptographically large. In
addition, to make the complexity of guessing the L − K unknown bits of each
chaotic state cryptographically large, L−K should also be sufficiently large. To
be practical, (L,K) = (64, 8) is suggested. In this case, the complexity to get
the value of x(0) is O

(
2L−K

)
= O

(
256

)
, and the complexity to get the value of

µ (i.e., to get two consecutive chaotic states) is O
(
22(L−K)

)
= O

(
2112

)
. Such

a complexity is sufficiently large to make both the brute-force attack and the
attack of deriving the secret key from fm impossible in practice.

However, because CNN is a stream cipher, making L − K sufficiently large
cannot enhance the security against the known/chosen-plaintext attacks based
on the mask signal fm. To resist such attacks, a substitution encryption part
should be used to make CNN a product cipher. Note that the security of the
modified CNN is ensured by the new substitution part, not the CNN itself.
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So, essentially speaking, the CNN cannot be enhanced to resist known/chosen-
plaintext attacks.

5 Conclusion

In this paper, the security of a chaotic signal encryption scheme called CNN
[7–10] has been investigated and it is found that the encryption scheme is not
secure from the cryptographical point of view. Both theoretical and experimen-
tal analyses show the feasibility of the proposed known/chosen-plaintext attacks
of breaking CNN. Also, it is pointed out that the security of CNN against brute-
force attacks was much over-estimated. Some possible methods to enhance the
security of CNN are also discussed, but its insecurity against the known/chosen-
plaintext attacks cannot be essentially improved. As a result, CNN is not sug-
gested in applications requiring a high level of security.
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